The effects of electric field and gate bias pulse on the migration and stability of ionized oxygen vacancies in amorphous In–Ga–Zn–O thin film transistors

نویسندگان

  • Young Jun Oh
  • Hyeon-Kyun Noh
  • Kee Joo Chang
چکیده

Oxygen vacancies have been considered as the origin of threshold voltage instability under negative bias illumination stress in amorphous oxide thin film transistors. Here we report the results of first-principles molecular dynamics simulations for the drift motion of oxygen vacancies. We show that oxygen vacancies, which are initially ionized by trapping photoexcited hole carriers, can easily migrate under an external electric field. Thus, accumulated hole traps near the channel/dielectric interface cause negative shift of the threshold voltage, supporting the oxygen vacancy model. In addition, we find that ionized oxygen vacancies easily recover their neutral defect configurations by capturing electrons when the Fermi level increases. Our results are in good agreement with the experimental observation that applying a positive gate bias pulse of short duration eliminates hole traps and thus leads to the recovery of device stability from persistent photoconductivity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of Interface and Bulk States on the Stability of Amorphous InGaZnO Thin Film Transistors under Gate Bias and Temperature Stress

The gate bias and temperature instability of InGaZnO TFTs were improved by adopting double stacked channel layer (DSCL). The mechanism of Vth shift under stress was studied by this structure. An interface with of less oxygen plasma damaging and lower oxygen vacancies in bulk were achieved by DSCL, resulting in a higher stability of Vth.

متن کامل

Anion control as a strategy to achieve high-mobility and high-stability oxide thin-film transistors

Ultra-definition, large-area displays with three-dimensional visual effects represent megatrend in the current/future display industry. On the hardware level, such a "dream" display requires faster pixel switching and higher driving current, which in turn necessitate thin-film transistors (TFTs) with high mobility. Amorphous oxide semiconductors (AOS) such as In-Ga-Zn-O are poised to enable suc...

متن کامل

Influence of an anomalous dimension effect on thermal instability in amorphous- InGaZnO thin-film transistors

Articles you may be interested in Increase of mobility in dual gate amorphous-InGaZnO4 thin-film transistors by pseudo-doping Appl. Effect of hydrogen incorporation on the negative bias illumination stress instability in amorphous In-Ga-Zn-O thin-film-transistors Suppress temperature instability of InGaZnO thin film transistors by N2O plasma treatment, including thermal-induced hole trapping ph...

متن کامل

Oxygen Defect-Induced Metastability in Oxide Semiconductors Probed by Gate Pulse Spectroscopy

We investigate instability mechanisms in amorphous In-Ga-Zn-O transistors based on bias and illumination stress-recovery experiments coupled with analysis using stretched exponentials and inverse Laplace transform to retrieve the distribution of activation energies associated with metastable oxygen defects. Results show that the recovery process after illumination stress is persistently slow by...

متن کامل

A solution-processed quaternary oxide system obtained at low-temperature using a vertical diffusion technique

We report a method for fabricating solution-processed quaternary In-Ga-Zn-O (IGZO) thin-film transistors (TFTs) at low annealing temperatures using a vertical diffusion technique (VDT). The VDT is a deposition process for spin-coating binary and ternary oxide layers consecutively and annealing at once. With the VDT, uniform and dense quaternary oxide layers were fabricated at lower temperatures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015